Self-organized and self-assembled TiO2 nanosheets and nanobowls on TiO2 nanocavities by electrochemical anodization and their properties

Author:

Arenas-Hernandez AlbaORCID,Zúñiga-Islas Carlos,Torres-Jacome Alfonso,Mendoza-Cervantes Julio César

Abstract

Abstract In this research work, we prepared for the first time TiO2 nanosheets and nanobowls assembled on an arrangement of TiO2 nanocavities, and studied their morphological, optical, and structural properties. The assembled nanostructures were synthesized by a fast two-step electrochemical anodization using fluorides and ethylene glycol. By Field Emission Scanning Electron Microscopy, we showed that these nanostructures have a morphology well organized and ordered with a homogeneous distribution. Also, other characteristics such as photoluminescence, reflectance spectra, band gap energy, and Raman spectra were studied and compared with the optical and structural properties of TiO2 nanotubes. We found that the time of anodization is a key parameter to control the final shape of the individual elements in the nanostructure. Our results show that when nanobowls or nanosheets are self-assembled on nanocavities the morphological, optical, and structural properties change significantly in comparison to TiO2 nanotubes. Furthermore, the emission was improved considerably and the band gap energy was modified to higher energy values. Likewise, the interference fringes are generated in the reflectance spectra by the length of the nanocavities and by the thickness of the nanobowls and the nanosheets. Finally, a reduction on the displaced the Eg(1) Raman mode was observed with decreasing of the length of the nanocavities.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3