Cytotoxic evaluation of Dovyalis Caffra leaf extract-mediated hematite-(Fe2O3) nanoparticles for biological applications

Author:

Adeyemi Jerry OORCID,Ajiboye Timothy OORCID,Oyedeji Adebola O,Singh Moganavelli,Fawole Olaniyi A

Abstract

Abstract Although hematite (Fe2O3) nanoparticles are gaining attention for biomedical purposes due to their unique properties, eco-friendly synthesis using plant extracts is being explored due to toxicity concerns of the resulting material. This study explores the use of plant extracts (Dovyalis caffra leaf extracts) for the synthesis of Fe2O3 nanoparticles alongside their cytotoxicity profile using human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). The physicochemical properties of the prepared nanoparticles were established using x-ray diffraction (XRD) and microscopy techniques, confirming their crystalline nature and spherical morphology with minimal agglomeration. Using the MTT assay approach, the cytotoxicity profile of the nanoparticles revealed dose-dependent cytotoxic effects, with higher specificity towards cancer cells and very low toxicity towards the human cell line, suggesting safe usage as biomedical agents. While the standard drug 5-Fluorouracil possessed significantly higher cytotoxicity, its unwanted high toxicity towards normal human cells makes the Fe2O3 nanoparticles a better choice. These findings suggest the potential of Dovyalis caffra leaf extract-mediated Fe2O3 nanoparticles for biomedical applications, emphasizing their low toxicity towards normal human cells and specificity towards cancer cells.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3