Septal destruction enhances chaotic mixing and increases cellular doses of nanoparticles in emphysematous acinus

Author:

Talaat Mohamed,Si Xiuhua April,Kitaoka Hiroko,Xi JinxiangORCID

Abstract

Abstract One hallmark of emphysema is the breakdown of inter-alveolar septal walls in pulmonary acini. How the acinar dosimetry of environmental aerosols varies at different stages of emphysema remains unclear; this is specifically pertinent to users of tobacco products, which is the leading cause of emphysema. The objective of this study is to systematically assess the impacts of septal destruction on the behavior and fate of nanoparticles (1–800 nm) in a pyramid-shaped sub-acinar model consisting of 496 alveoli. Four diseased geometry variants were created by gradually removing the septal walls from the base model. Particle motions within the acinar region were tracked for particles raging 1–800 nm at four emphysema stages using a well-tested Lagrangian tracking model. Both spatial profile and temporal variation of particle deposition were predicted in healthy and diseased sub-acinar geometries on both a total and regional basis. Results show large differences in airflow and particle dynamics among different emphysema stages. Large differences in particle dynamics are also observed among different particle sizes, with one order of magnitude’s variation in the speeds of particles of 1, 10, and 200 nm. The destruction of septal walls also changed the deposition mechanisms, shifting from connective diffusion to chaotic mixing with emphysema progression. The sub-acinar dosimetry became less sensitive to particle size variation with more septal destructions. The lowest retention rate was found at 200–500 nm in the healthy sub-acinar geometry, but at 800 nm in all emphysematous models considered. The acinus-averaged dose for nanoparticles (1–800 nm) increases with aggravating septal destructions, indicating an even higher risk to the acinus at later emphysema stages.

Funder

University of Massachusetts, Lowell

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3