Zein nanoparticles stabilized by hydrophilic small molecule stabilizer matrine deliver curcumin effectively

Author:

Liu HongORCID,Wei Yongquan,Li Fu,Wang Xiang,Chen Yuxin,Huang Zenghui,Liang Pengyun,Wang Lisheng

Abstract

Abstract Matrine (MAR), a quinolone alkaloid, was employed to augment the stability of zein nanoparticles. The incorporation of MAR into the hydrophobic shell of zein nanoparticles was primarily achieved through hydrogen bonding. Curcumin (CUR), a hydrophobic active substance, was encapsulated in the hydrophobic core of zein/matrine nanoparticles (ZMNPs). The preparation of ZMNPs and curcumin-loaded zein/matrine nanoparticles (CZMNPs) was accomplished using an antisolvent precipitation method. The encapsulation efficiency of curcumin in ZMNPs (zein/MAR = 8:1, 20 mg zein and 2.5 mg matrine) was significantly greater (52.64%) than that of nanoparticles produced from a single zein (2.50%). CZMNPs demonstrated a notable encapsulation efficiency and loading capacity (88.30% and 7.84%, respectively) upon the addition of 2 mg of curcumin, and were capable of sustained and gradual release of curcumin in simulated intestinal fluid. Furthermore, the stability of ZMNPs was observed to be favorable across a range of environmental conditions, including pH levels of 2–4 and 6–9, salt concentrations of ≤150 mM, temperatures of ≤90 °C, and storage at room temperature for a duration of 30 days. Additionally, the inherent anti-cancer properties of MAR make CZMNPs a more efficacious inhibitor of tumor cell proliferation in vitro. Moreover, the uptake of CZMNPs by A549 cells was significantly enhanced, potentially through the process of endocytosis. Therefore, the incorporation of matrine in zein-based nanoparticles confers anticancer properties to the resulting ZMNPs. These nanoparticles can serve as encapsulating agents for bioactive compounds in pharmaceutical formulations and as a novel delivery strategy for long-term cancer care. Specifically, matrine is anticipated to function as a potential stabilizer for other nanosystems.

Funder

Nanning Science and Technology Bureau

Guangxi Department of Science and Technology

Publisher

IOP Publishing

Subject

Polymers and Plastics,Materials Science (miscellaneous),Biomaterials,Electronic, Optical and Magnetic Materials

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3