Electron spin resonance studies of (La0.6Ln0.4)0.67Ca0.33MnO3 (Ln = La, Pr, Nd and Sm) nanoparticles at different temperatures

Author:

Leng Kai,Xia Weiren,Tang Qingkai,Yang Li,Wu Zhiwei,Yi Kang,Zhu XinhuaORCID

Abstract

Abstract In this work, (La0.6Ln0.4)0.67Ca0.33MnO3 (Ln = La, Pr, Nd and Sm) nanoparticles (NPs) synthesized by sol-gel process were investigated by electron spin resonance (ESR) in the temperature range 100–330 K. At the high temperature the ESR signals of La0.67Ca0.33MnO3 (LCMO) NPs only consist of a single peak with Landé g factor of 2.0. This signal is contributed from the paramagnetic (PM) Mn ions in the LCMO NPs. With decreasing the temperature the PM resonance line is split into two resonance lines, one is ferromagnetic (FM) resonance line shifting towards low field while the other is antiferromagnetic (AFM) resonance line moving to a high field. The resonance peak-to-peak spectra linewidth, increases monotonically with decreasing the temperature owing to the strong double exchange interactions below the Curie temperature (T C). Resonance field is almost temperature independent in the PM phase whereas it drops fast at temperature below T C. Consequently, the Landé g factor in the PM region is very close to 2.0 whereas in the range of 2.17–2.47 under FM state due to the strong FM interactions. For the Pr (Nd)-doped LCMO NPs below T C, their g values are in the range of 2.04–2.18 due to the substantial reduction of the FM interactions caused by the Pr (Nd)-doping at La-site. The g values of the Sm-doped LCMO NPs exhibit a slight fluctuation around 1.88 (but smaller than 2.0) within the measured temperature due to the existence of weak magnetic interactions under the PM states.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Nanjing University

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3