Novel cost-effective and electrocatalytically active intermetallic nickel aluminide counter electrode for dye sensitized solar cells

Author:

Sahare SanjayORCID,A Santhosh KumarORCID,Bhave TejashreeORCID,Abhyankar Ashutosh

Abstract

Abstract The very high cost, scarcity and dissolubility of platinum (Pt) is the center of debates as a counter electrode (CE) in dye sensitized solar cells (DSSCs) research domain. To deal with such core issues, herein, novel low-cost and electro-catalytically active inter-metallic nickel aluminide (Ni3Al) thin films have been fabricated successfully on fluorine-doped tin oxide substrates by DC magnetron sputtering at room temperature. For the first time, Ni3Al has been utilized as a CE for DSSCs application. Further, the solar cell performance of Ni3Al based DSSC has compared with the sputtered coated Pt thin film based DSSC performance. Under open atmospheric experimental preparation conditions (in air), a maximum power conversion efficiency of 3% has been achieved with Ni3Al CE. The obtained efficiency is quite analogous to a DSSC fabricated with a Pt CE. Further, as-fabricated Ni3Al CEs have exhibited better electrochemical catalytic activity and anti-corrosion effect than that of sputtered Pt CEs. The low-cost and excellent electrocatalytic properties of intermetallic Ni3Al thin films may pave the way towards development of Pt-free CE for DSSCs.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3