UV electromagnetic irradiation sensing by GQDs sensitized ZnO/GaN heterostructure for wearable dosimetry

Author:

Goswami Lalit,Prajapat Pukhraj,Vashishtha PargamORCID,Gupta GovindORCID

Abstract

Abstract Sensing of Ultraviolet (UV) Electromagnetic Irradiations (EIs) for wearable dosimetry is promulgated universally by reserving their place in precise calibration for the controlled exposure of UV-EIs for the betterment of humankind. In other words, the controlled exposure of incident optical power density (OPD) of UV-EIs found advantageous and numerous noble healthcare applications such as beta-endorphin molecule (provide feel-good factor to the brain) level augmentation, adequate vitamin D (physical strength) level formation, in skin treatment like eczema and dermatitis, sensing important biomolecules like Uric Acid (responsible for critical disease related with kidney and heart). Moreover, the controlled exposure of OPDs also significantly impacts UV disinfection technologies, which provide a defensive shield against critical respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the COVID-19 pandemic. Therefore, by understanding the importance of limited exposure to these vital UV-EIs, the present study showcased the GQDs-sensitized ZnO/GaN heterostructured UV sensor utilized to explore the impact of UV-EIs OPDs on their performance. This study helps to develop and utilize the UV sensor-based wearable dosimetry for in-house diagnostics of critical healthcare parameters. This report also divulged an interesting core mechanism (band bending, tunneling through narrowed hole injection under increased negative bias) involved in affecting the performance of the UV-EIs sensor by a function of growing OPDs with the help of a suitable band diagram. The impact of increasing OPDs on fabricated UV-EIs sensors can be well understood by the fact that, by varying the OPDs up to ∼550%, the Gain (G), responsivity (R), external quantum efficiency (EQE) and noise equivalent power (NEP) significantly increases up to (156.7 to 332.4) ∼300%, (118 A W−1 to 3200 A W−1) 2700%, (∼870% to 12 × 103%) 1400% and (1.3 pWHz−1/2 to 50 fWHz−1/2) 10,000% respectively at an applied bias of −6 V. Furthermore, the time-correlated transient photoresponse is also dramatically improved with increasing OPDs, wherein the increment in rise and decay time is estimated as (159 ms to 7.86 ms) ∼2000% and (68.7 ms to 12.4 ms) ∼500%, respectively.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3