Advances in nanomaterials for heterogeneous photocatalysis

Author:

Thongam Debika DeviORCID,Chaturvedi HarshORCID

Abstract

Abstract Photocatalysis method for environmental applications has been using for a long time. This review article traces back the origin of catalysis, its classification and journey of development to heterogeneous photocatalysis and the article’s novelty is in the simplicity, and easily understandable language, designed for the beginners. These heterogeneous photocatalysts are grouped into eleven different categories. As the paper is focused on photocatalysis, an insight on fundamental principles and mechanisms of photocatalysis are explained systematically with schematic illustrations and reactions that take place during redox- oxidation and reduction reactions in photocatalysis. With an approach towards utilizing green energy and expanding the photocatalyst’ absorption wavelength range towards the visible regime, bandgap engineering techniques by adopting doping and hetero-structures are explained with examples of different materials. In addition, dominating factors of photocatalysis reaction viz. composition of a heterogeneous photocatalyst, doping, hetero-structures, pH, surface defects on photocatalysis reaction are explored, focussing on variable charge transfer mechanisms. The main influencing factor in generating reactive oxygen species is pH of the photocatalysis reaction and are studied indetail. The effect of alkalinity or acidity in catalyst surfaces and molecular interaction depending upon the point zero charges of the photocatalyst are discussed. For the better study of catalyst properties, careful analysis and study is a much-needed field as a scope for further improvement. Hence, this article will guide a beginner to understand the photocatalysis topic with ease.

Funder

Ministry of Human Resource Development

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3