Abstract
Abstract
Zinc cadmium sulfide solid (Zn
x
Cd1−x
S) related composites received great attention in photocatalytic hydrogen production because of their tunable bandgap and strong visible light absorption range. But sulfide-based metal materials commonly suffer from photo-corrosion issues. It is very important to construct the photocatalysts with high efficient activity and photostability for H2 production. Herein, we successively prepared ZnCdS/ZnS (ZCS/ZS) heterostructures, ZnCdS/ZnS/MoS2 (ZCS/ZS/M) heterostructures decorated ZCS/ZS with MoS2 quantum dots, then we obtained x-C@ZCS/ZS and x-C@ZCS/ZS/M heterostructures encapsulated ZCS/ZS and ZCS/ZS/M with carbon layer. The performance of the photocatalytic hydrogen production showed that sample 0.05-C@ZCS/ZS/M has a remarkable photocatalytic H2 evolution rate of 15.231 mmol·h−1·g−1 with noble metal-free co-catalysts. This rate was approximately 21 times higher than that of the pristine ZCS/ZS photocatalyst. The optimized sample reveals an excellent stability, without activity losses after 10 h. The improved photocatalytic activity can be attributed to the unique heterojunction structure formed by ZCS/ZS and MoS2. Additionally, the carbon films played a crucial role in providing excellent stability by spatially separating the sites for redox reactions, thereby inhibiting the recombination of photo-generated electron–hole pairs.
Funder
National Natural Science Foundation of China
Yangzhou Science and Technology Bureau
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献