Transition in nanoscale electrical conductivity in the Langmuir-Blodgett film of a novel liquid crystalline oligomer

Author:

Kumar BharatORCID,Suresh K A,Bisoyi Hari Krishna,Kumar Sandeep

Abstract

Abstract We have studied the nanoscale electrical conductivity of a monolayer film of a novel star shaped liquid crystalline molecule, hexatriphenylene substituted anthraquinone (AQD6). The molecule has a central core of electron deficient anthraquinone moiety connected to six electron rich triphenylene moieties by flexible alkyl chains. The monolayer formed at air-water interface was transferred onto the solid substrates by Langmuir-Blodgett (LB) technique and its surface topography was imaged using an atomic force microscope (AFM). The limiting area obtained from the surface pressure-area per molecule isotherm and the topography of the AFM images suggest that the anthraquinone moiety of the AQD6 molecule is organized in face-on configuration on the substrate and the triphenylene moieties are in edge-on configuration extended away from the substrate. We have studied the electrical conductivity of the AQD6 monolayer deposited on gold coated silicon substrate using a current sensing AFM. Analysis of current (I) − voltage (V) characteristics of the metal-monolayer film-metal junction showed a transition from direct tunneling to an injection tunneling. Further, we have estimated the barrier height and the effective mass of electron in the metal-monolayer film-metal junction.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Robustness of Facial Landmark Detection by Defending against Adversarial Attacks;2021 IEEE/CVF International Conference on Computer Vision (ICCV);2021-10

2. ADNet: Leveraging Error-Bias Towards Normal Direction in Face Alignment;2021 IEEE/CVF International Conference on Computer Vision (ICCV);2021-10

3. Welcome to Nano Express;Nano Express;2020-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3