Role of charge-compensation process on the structural, microstructure and electrical properties of pure and Nb-doped Sr2SnO4

Author:

Jatiya Manisha,Yadav Vedika,Singh Abhishek KumarORCID,Kumar UpendraORCID

Abstract

Abstract This article explores the charge compensation method by synthesising Sr2SnO4, Sr2Sn0.99Nb0.01O4, and Sr1.995Sn0.99Nb0.01O4. The synthesis of a monophasic, tetragonal sample was achieved using a typical ceramic approach and high-temperature heat treatment. The XRD followed by Rietveld refinement, confirmed the crystallization of material under the space group I4/mmm. The crystallite sizes for all samples determined to be less than 50 nm, while the micro-strain falls within the range of (1.78–2.93) × 10–3. The microstructure exhibits a cuboidal shape for all samples, and the grain size is observed to decrease with the addition of Nb. The dielectric characteristics of the samples indicate the existence of Maxwell-Wagner and Orientational polarization in the sample. The sample Sr2Sn0.99Nb0.01O4 demonstrates a greater conductivity value compared to Sr1.995Sn0.99Nb0.01O4. This is attributed to the presence of excess electrons that compensate for the overall charge, as opposed to Sr1.995Sn0.99Nb0.01O4 where the extra charge is compensated by a cationic vacancy V Sr . The time-temperature-superposition principle (TTSP) is applicable to all compositions and indicates that similar sources are responsible for both conduction and relaxation processes. The dielectric permittivity and dissipation factor are found to be in the range of 150 to 175 and 0.2 to 0.5, respectively. This suggests that they have potential for future use in millimeter-wave communication with dielectric resonator antennas (DRAs). Due to the presence of oxygen ions and the ability to conduct both ions and electrons, at temperatures above 400 °C, it is a suitable choice for electrode materials in the application of intermediate temperature solid oxide fuel cell (IT-SOFCs). Exploring the manipulation of defects using electrical and ionic charge compensation methods shows potential for enhancing materials in semiconductor technology.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3