Cellular uptake and cytotoxicity of PEGylated gold nanoparticles in C33A cervical cancer cells

Author:

David ShaquanORCID,Patel Devanshi Yogeshkumar,Cardona Sandra M.ORCID,Kirby Neil,Mayer Kathryn MORCID

Abstract

Abstract Gold nanoparticles (GNPs) have served as an excellent candidate for biomedical applications. GNPs can be conjugated with carboxyl-polyethylene glycol-thiol (PEG) as a stealth coating which prolongs circulation time [Lipka J et al 2010 Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31 , 6574–6581, Janát-Amsbury M et al 2011 Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm, 77 , 417–423] and increases cellular uptake.[He B et al 2017 Increased cellular uptake of peptide-modified PEGylated gold nanoparticles. Biochem. Biophys. Res. Commun., 494 , 339–345, Soenen S. J et al 2014 , The cellular interactions of PEGylated gold nanoparticles: effect of PEGylation on cellular uptake and cytotoxicity. Part. Part. Syst. Charact., 31 , 794–800, Guo J et al 2016 Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int. J. Pharm., 509 , 16–27. Brandenberger C et al 2010 Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol‐coated gold nanoparticles. Small, 6 , 1669–1678. To examine the biological effects of PEG-coated GNPs, we investigated their cytotoxicity on human cervical cancer C33A cells as compared to citrate-capped GNPs. Our results indicated that PEGylated GNPs markedly induce apoptosis and necrosis causing cell shrinkage and cell membrane asymmetry. 30 nm citrate-capped GNPs were synthesized in aqueous solution using a citrate-reduction method. GNPs were functionalized with PEG (MW = 7500 g mol−1. The GNPs were characterized using scanning electron microscopy (SEM), confirming that the as-synthesized GNPs have a diameter of 30 nm. Dynamic light scattering (DLS) determined that the hydrodynamic diameter of PEGylated GNPs was 78.82 nm, and that of citrate-capped GNPs was 43.82 nm. Zeta potential measurements showed an increase in colloidal stability for PEGylated GNPs as compared to citrate GNPs, with a zeta potential of −33.33 mV observed for citrate-capped GNPs and a zeta potential of −43.38 mV observed for PEGylated GNPs. The PEGylated GNPs were found to effectively induce early and late-stage apoptosis in C33A cells with a significant reduction in total cell viability of 32.3%. Based on the apoptotic activity in C33A cells, PEGylated GNPs may serve as a promising radiosensitizer for cancer treatments.

Funder

NIH-Research Initiative for Scientific Enhancement

Publisher

IOP Publishing

Subject

General Medicine

Reference43 articles.

1. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity;Boisselier;Chem. Soc. Rev.,2009

2. Recent progress in cancer thermal therapy using gold nanoparticles;Abadeer,2016

3. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles;Li;Cancer Letters,2009

4. Gold nanoparticle: synthesis and characterization;Verma;Veterinary World,2014

5. Turkevich method for gold nanoparticle synthesis revisited;Kimling;J. Phys. Chem. B,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3