Abstract
Abstract
The development of new materials for air filtration and particulate matter (PM) pollution is critical to solving global environmental issues that threaten human health and accelerate the greenhouse effect. In this study, a novel electrospun polystyrene-SiO2 nanoparticle (PS-SNP) fibrous membrane was explored by a single-step strategy to obtain the composite multi-layered filter masks. In addition, the air filtration performance of this fibrous membrane for PM was evaluated. The effects of SiO2 on the composition, morphology, mechanical property, and surface wetting of PS-SNP membranes were studied. Allowing SiO2 to be incorporated into the PS polymer was endowed with promising superhydrophobicity and demonstrated excellent mechanical properties. As-prepared PS-SNP membranes possess significantly better filtration efficiency than pure PS membrane. Furthermore, a three-layered air filter media (viscose/PS-SNP/polyethylene terephthalate) used in this study has considerable performances compared to the commercial masks. Since this air filtration membrane has excellent features such as high air filtration and permeability, we anticipate it to have huge potential application in air filtration systems, including cleanroom, respirator, and protective clothing.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献