Investigation of diodic behavior in p-NiO/n-SnO2 bilayer heterojunctions fabricated via DC magnetron reactive sputtering

Author:

Adline SherminORCID,Bhat Prashant,Kekuda DhananjayaORCID

Abstract

Abstract Tin oxide (SnOx) thin films at varying oxygen flow rates and Nickel oxide (NiO) thin films were deposited by reactive dc magnetron sputtering on glass substrates. Structural, chemical, morphological, optical and electrical properties of the deposited films were studied. XRD studies confirmed that the deposited films were polycrystalline in nature. SnOx thin films have shown two phases such as SnO and SnO2. AFM and SEM were used to analyse the morphology of the films and EDS confirmed the presence of Sn and Ni in the respective films. The examination of the x-ray photoelectron spectrum showed that the sputtered SnOx films contain both Sn2+ and Sn4+ oxidation states and NiO films contain Ni+2 and Ni+3 oxidation states. Photoluminescence study shows strong violet and weak red emission peaks for SnOx films and NiO showed strong emission peaks in the orange-red region. The optical results demonstrate that the films were transparent. The bandgap of SnOx and NiO samples were ∼3.3 eV and − 3.42 eV, respectively. Further we constructed a p-NiO/n-SnO2 heterojunction diode and its electrical characteristics were thoroughly assessed. Using dark current–voltage measurements, electrical characteristics such saturation current, ideality factor and barrier height were determined. The increase in oxygen flow rate led to reduction in the rectification of the devices. Our findings support the creation of high-performance metal oxide heterojunction for optoelectronic devices.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3