Abstract
Abstract
Pulse-voltage-stimulated phase transition in nanometer-sized zirconium (Zr) wires was observed in situ by high-resolution transmission electron microscopy. Simultaneously, the variation in conductance during the transition between crystalline and amorphous phases was examined. The crystalline phase of a hexagonal closed-packed structure in the wires transformed into an amorphous phase while applying pulse voltages of 4 ns in width, and subsequently returned to the initial crystalline phase by the impression of pulse voltages of 5 ms in width; the reversible phase transition via voltage impression using shorter and longer pulse waves was observed. The average conductance per a unit area in the amorphous phases was decreased to 0.87 of the crystalline phases. The amorphous region in the wires expanded gradually by every pulse-voltage impression, whereas the conductance decreased stepwise in response to the gradual expansion. It was demonstrated that the conductance of the wires can be controlled in a stepwise manner via pulse-voltage impression, leading to the application of the nanowires to functional nanodevices.
Funder
Japan Society for the Promotion of Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献