Monolithic heterogeneous integration of Si photodetector and Van der Waals heterojunction with photocurrent enhancement

Author:

Li JiaqiORCID,Li Zebin,Xie Sheng,Su Yue,Mao Xurui

Abstract

Abstract Two-dimensional material has many novel features, which can be used to significantly improve the performance of traditional photonic and electronic devices. Therefore, the development of silicon/two-dimensional material monolithic heterogeneous integrated photodetector has attracted extensive attention worldwide. In this paper, we present a method to enhance the response of photocurrent of silicon-based PN junction photodetectors by using two-dimensional material Van der Waals heterostructures. The MoS2/graphene/N+ silicon monolithic heterogeneous integrated Van der Waals heterostructure is used as an NPN-type phototransistor to realize the amplification of photocurrent. When the device is irradiated, the photogenerated electron hole pairs in the semiconductor are separated by the applied electric field. However, graphene has a low density of defect states, and only a few electrons from N+ silicon can be recombined in graphene. Meanwhile, the graphene layer is very thin, and the positively biased graphene/N+ silicon junction and reversed-biased MoS2/graphene junction will accelerate the electrons to across the graphene layer and directly into MoS2. Using MXenes as the contact electrode of the MoS2 can eliminate the Fermi level pinning effect. The experimental results show that the photoresponsivity and photocurrent gain increase with the bias voltage, in the range of 0 to 5 V bias voltage. And the optical Ion/Ioff ratio increases by nearly 50 times. This research provides new insights for the detection of weak light and design for the photon computing device.

Funder

National Natural Science Foundation of China

Enterprise Science and Technology Commissioner Project

2021 Special Research Assistant Project Funding

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3