Ionic gating in metallic superconductors: A brief review

Author:

Piatti ErikORCID

Abstract

Abstract Ionic gating is a very popular tool to investigate and control the electric charge transport and electronic ground state in a wide variety of different materials. This is due to its capability to induce large modulations of the surface charge density by means of the electric-double-layer field-effect transistor (EDL-FET) architecture, and has been proven to be capable of tuning even the properties of metallic systems. In this short review, I summarize the main results which have been achieved so far in controlling the superconducting (SC) properties of thin films of conventional metallic superconductors by means of the ionic gating technique. I discuss how the gate-induced charge doping, despite being confined to a thin surface layer by electrostatic screening, results in a long-range ‘bulk’ modulation of the SC properties by the coherent nature of the SC condensate, as evidenced by the observation of suppressions in the critical temperature of films much thicker than the electrostatic screening length, and by the pronounced thickness-dependence of their magnitude. I review how this behavior can be modelled in terms of proximity effect between the charge-doped surface layer and the unperturbed bulk with different degrees of approximation, and how first-principles calculations have been employed to determine the origin of an anomalous increase in the electrostatic screening length at ultrahigh electric fields, thus fully confirming the validity of the proximity effect model. Finally, I discuss a general framework—based on the combination of ab-initio Density Functional Theory and the Migdal-Eliashberg theory of superconductivity—by which the properties of any gated thin film of a conventional metallic superconductor can be determined purely from first principles.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3