Supported Binary and Ternary Nanoalloy Nanoparticle Catalysts-A Green Processing Approach using the Leidenfrost layer as Nanoreactor

Author:

Es-Souni MohammedORCID

Abstract

Abstract When a nanocarbon substrate is heated between 300 °C and 320 °C that is slightly above the Leidenfrost temperature and subsequently quenched in an aqueous solution containing a mixture of noble metal ions, a high density of nanoalloy nanoparticles (NPs) form on the surface. Large surface areas can be decorated in this way by nanoalloy NPs of the system (Au, Pt, Pd). Both binary AuPt, AuPd and PtPd as well as ternary nanoalloys are obtained. The chemical composition of the nanoalloys can be tuned by varying the ion mixture ratio of the solutions. The simultaneous reduction of the noble metal ions on the surface occurs without the need of any reducing agent, presumably owing to charge transfer from ionized species during the quenching process. The method yields nanocarbon-supported, highly adherent nanoalloy NPs, is materials efficient and cost effective because only the surface is modified with the costly noble metals. The supported nanoalloy NPs are exemplary applied to the electrooxidation of methanol and formic acid in acidic solutions, and show an overall high performance.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3