The optimization of gold nanoparticles–horseradish peroxidase as peroxidase mimic using central composite design for the detection of hydrogen peroxide

Author:

Talapphet Natchanok,Huh Chang SoonORCID

Abstract

Abstract The oxidizing agent, hydrogen peroxide (H2O2), which is a part of reactive oxygen species (ROS) is well-known to contribute to oxidative stress-induced damage to biological molecules. An excess of free radicals can harm health and is associated with human diseases. Gold nanotechnology, a highly relevant nanomaterial, has been utilized as a new material in advanced sensor detection. In this study, colorimetric methods based on peroxidase enzymes were developed for measuring H2O2. The synthesized gold nanoparticles (AuNPs) showed a concentration of approximately 1.73 nM at a wavelength of 520 nm. The average diameter displayed a uniform size distribution, estimated at 18 nm, and an increase in the shell thickness of AuNPs-horseradish peroxidase (HRP) was observed in the TEM images. The AuNPs-HRP system demonstrated remarkable catalytic activity in the reaction of the chromogenic substrate tetramethylbenzidine (TMB) with H2O2, resulting in the production of an oxide product. The optimal conditions for the AuNPs-HRP system, as determined by central composite design (CCD), were a temperature of 25 °C and a pH of 7 within an 8 h period. A strong linear relationship was observed between different absorbance values and the H2O2 concentration, with a coefficient of determination of 0.9956. A portable platform was successfully used to determine H2O2 levels in beverages with recoveries ranging from 95.51% to 118.85%. These findings suggest that the AuNPs-HRP system could be applied to detect H2O2 in beverages.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3