Silver nanoprism-mediated protein estimation—an ultrasensitive platform for rapid estimation of protein concentration

Author:

Sundar Katha Shyam,Ramesh Jatavath,Chinthala Praveen,Rao Karunakar,Banerjee Swagata,Roy ShibsekharORCID

Abstract

Abstract Estimation of protein concentration in the range of nanogram level (ng/ml) is a big challenge for conventional protein estimation methods. The highly dipole sensitive spectroscopic properties of Silver nanoprism (AgNPR) has been utilized to develop a rapid and highly sensitive method for the estimation of globular protein concentration at ng/ml (or ppb) range. We have applied a unique molecular doping approach to introduce protein in the interstitial space of the Ag fcc(111) crystal planes within AgNPR structure. The presence of the doped protein induces deformation in the crystal plane arrangement of AgNPR that results in a quantitative red shift of the dipole resonance peak (D-peak) of AgNPR under UV–vis spectroscopy. The proposed method allows detection of a protein concentration range of as low as 1–20 ng ml−1- that is better than the sensitivity limit of conventional protein estimation techniques. This method has been successfully applied for commonly used proteins like haemoglobin (Hb), Bovine serum albumin (BSA), Trypsin (TRYP) and Lysozyme (LYS) with a very low limit of detection (LOD) within 2–6 ng ml−1. The lowest LOD value was shown by Hb as 2.08 ng ml−1. The method has further been validated by measuring Casein concentration from milk with an accuracy of 99% and 95% recovery for the concentration of 3.1 and 31 ng ml−1 respectively. Transmission emission microscopy (TEM) images show that the doped protein has been found to alter the size and shape of the AgNPR as a function of the dopant concentration by creating systematic deformation. This method does not require any alteration of the reaction temperature and solely depends on the physical interaction of doped protein with its neighbouring crystal structure of the nanoplanar geometry.

Funder

SERB, India

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3