Bouncing dynamics of electrostatically actuated NEM switches

Author:

Bognash Mohamed,Asokanthan Samuel FORCID

Abstract

Abstract The aim of the present research is to understand the bouncing dynamic behavior of nano electromechanical (NEM) switches in order to improve the switch performance and reliability. It is well known that bouncing can dramatically degrade the switch performance and life; hence, in the present study, the bouncing dynamics of a cantilever-based NEM switch has been studied in detail. To this end, the repulsive van der Waals force is incorporated into a nano-switch model to capture the contact dynamics. Intermolecular forces, surface effects, and gas rarefication effects were also included in the proposed model. The Euler-Bernoulli beam theory and an approximate approach based on Galerkin’s method have been employed to predict transient dynamic responses. In the present study, performance parameters such as initial contact time, permanent contact time, major bounce height, and the number of bounces, were quantified in the presence of interactive system nonlinearities. The performance parameters were used to investigate the influence of surface effects and rarefication effects on the performance of an electrostatically actuated switch. Recommended operating conditions are suggested to avoid excessive bouncing for these types of NEM switches.

Funder

Natural Science and Engineering Research Council

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bending a graphene cantilever by a diamagnetic force;Journal of Applied Physics;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3