First-principles explorations on P8 and N2 assembled nanowire and nanosheet

Author:

Dong Yinan,Wang Shukai,Yu Chunbo,Li FengyuORCID,Gong Jian,Zhao JijunORCID

Abstract

Abstract ‘Bottom-up’ method is a powerful approach to design nanomaterials with desired properties. The bottle neck of being oxidized of phosphorous structures may be conquered by cluster assembling method. Here, we used P8 and N2 as assembling units to construct one-dimensional (1D) nanowire (NW) and two-dimensional (2D) nanosheet (NS), the stability, electronic and magnetic properties of these assembled nanomaterials are investigated using density functional theory (DFT) calculations. The assembled 1D-P8N2 NW and 2D-P8N4 NS are identified to possess good stability, as demonstrated by their high cohesive energies, positive phonon dispersions, and structural integrity through molecular dynamics simulations at 300 and 500 K. Moreover, they also exhibit good anti-oxidization property. The 2D-P8N4 NS is a direct bandgap semiconductor with the HSE06 gap of 2.61 eV, and shows appropriate band-edge aliments and moderate carrier mobility for photocatalyzing water splitting. The 1D-P8N2 NW is an indirect bandgap semiconductor, and Mn doping could convert it into a dilute magnetic semiconductor (DMS) with one Dirac cone in the spin-up channel, while the vdW-type sheet composed of Mn1@1D-P8N2 NWs is a ferromagnetic metal. Our theoretical study is helpful to design stable phosphorus-based nanomaterials with diverse properties and potential applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3