Surfactant-free synthesis and magnetic property evaluation of air-stable cobalt oxide nanostructures

Author:

Joshi NaveenORCID,Shivashankar S A,Narayan RogerORCID

Abstract

Abstract We report the synthesis of metastable cobalt oxide (CoO) nanostructures via the low-temperature microwave-assisted solvothermal (MAS) process. An alcoholic solution of cobalt (II) acetylacetonate in a sealed vessel was irradiated with microwaves at a temperature <150 °C and a pressure below 100 psi. As-synthesized powder material was characterized in terms of its structure and morphology. X-ray diffractometry (XRD) indicates the formation of well-crystallized CoO nanoparticles without the need for post-synthesis annealing. The mean crystallite size of the nanoparticles was estimated to be 41 nm. The morphology of the as-prepared powder sample was evaluated by field-emission scanning electron microscopy (FESEM), which revealed the formation of densely packed nanospheres of diameter <100 nm. The CoO nanospheres were obtained without the need for any surfactants or capping agents; they were found to be quite resistant to oxidation in ambient air over several months. We attribute the stability of CoO nanospheres to their dense packing, the driving force being the minimization of surface energy and surface area. Fourier-transform infrared (FT-IR) spectroscopy and Raman spectroscopy confirm the formation of phase-pure CoO nanostructures. The deconvolution of the active modes in Raman spectra obtained at room temperature reveals the Oh symmetry in rock-salt CoO produced by the MAS route. We have analyzed its effect on the magnetic characteristics of the CoO nanostructures. Isothermal field-dependent magnetization (MH) and inverse magnetic susceptibility measurements show a phase transition from antiferromagnetic to ferromagnetic interactions in the CoO nanostructures at around 10 K. The results indicate that the phenomenon of magnetic phase transition as a function of temperature is unique to CoO nanoparticles. This finding reveals the magnetic behavior of CoO nanostructures and presents opportunities for its possible application as an anisotropy source for magnetic recording.

Publisher

IOP Publishing

Subject

Polymers and Plastics,Materials Science (miscellaneous),Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3