Multifaceted analysis of nanotoxicity using primary cultured neurons

Author:

Kamikubo YujiORCID,Yamana Tomohito,Inoue Yuriko,Sakurai Takashi

Abstract

Abstract Various nanomaterials have been produced with the development of nanotechnology, some of which have been reported to have adverse effects on several types of cells, organs, and the environment. It has been suggested that some small nanoparticles can cross the blood-brain barrier and accumulate in the brain, which may be a potential cause of brain diseases. Neuronal cells are vulnerable to hypoxia, hypotrophy, and mechanical and oxidative stress. Therefore, it is essential to assess the toxicity of nanoparticles to neurons accurately. In this report, we describe a primary culture protocol to evaluate the toxicity of nanoparticles on neurons, a potential high-throughput method for assessing the cytotoxicity, and a method for evaluating the effect on neuronal maturation. This report assessed the toxicity of silicon dioxide, zinc oxide, and iron nanoparticles using rat hippocampal neurons, which are used frequently in pharmacological and physiological studies. Based on the methods and protocols we reported in this report, it may be possible to evaluate nanotoxicity to various neurons by using primary cultures of other brain regions (cerebral cortex, cerebellum, thalamus, etc.), spinal cord, and peripheral nerves.

Funder

Japan Society for the Promotion of Science

Terumo Foundation for Life Sciences and Arts

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3