Electrically driven cavity plasmons in Au nanowire over Au film

Author:

Zhang Junhao,Wu Yu,Zhou Wenna,Tang Jibo,Zhang ShunpingORCID,Xu Hongxing

Abstract

Abstract Light emission via inelastic tunneling electrons is appealing for integrated optoelectronic devices due to its femtosecond time scale that can in principle allow terahertz modulation bandwidth. It has gained renewed interest since 2015 due to the improved quantum efficiency, highly tunable emission wavelength, linewidth, or directionality once the electrodes are designed as a plasmonic nanocavity. However, efficient construction of stable tunnel junctions with desired plasmonic resonances is still technically challenging because of the subnanometer precision required in the electrical and optical design. Here, we demonstrate an easily accessible electrically driven cavity plasmon in metal-insulator-metal (MIM) tunnel junctions, comprised by a Au nanowire (NW) across two separate ultrasmooth Au electrodes. Two layers of self-assembled thiol molecule defines a reliable tunneling barrier. The contribution from the localized cavity plasmons to the total light emission is found to be dominant over that from the propagating surface plasmon polariton in the MIM waveguide, different from the traditional explanations. This work introduces a simplified method for constructing electrically driven cavity plasmons using crystalline metals, which holds promise for applications in in situ chemical or biosensing and the development of flexible light-emitting metasurfaces.

Funder

National Natural Science Foundation of China

Major Program of Hubei Province

Key R&D Program of Hubei

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3