Engineering sensitivity and spectral range of photodetection in van der Waals materials and hybrids

Author:

Sett ShailiORCID,Parappurath Aparna,Gill Navkiranjot Kaur,Chauhan Neha,Ghosh Arindam

Abstract

Abstract Exploration of van der Waals heterostructures in the field of optoelectronics has produced photodetectors with very high bandwidth as well as ultra-high sensitivity. Appropriate engineering of these heterostructures allows us to exploit multiple light-to-electricity conversion mechanisms, ranging from photovoltaic, photoconductive to photogating processes. These mechanisms manifest in different sensitivity and speed of photoresponse. In addition, integrating graphene-based hybrid structures with photonic platforms provides a high gain-bandwidth product, with bandwidths ≫1 GHz. In this review, we discuss the progression in the field of photodetection in 2D hybrids. We emphasize the physical mechanisms at play in diverse architectures and discuss the origin of enhanced photoresponse in hybrids. Recent developments in 2D photodetectors based on room temperature detection, photon-counting ability, integration with Si and other pressing issues, that need to be addressed for these materials to be integrated with industrial standards have been discussed.

Funder

Ministry of Human Resource Development

U.S. Army International Technology Center Pacific

Ministry of Electronics and Information technology

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3