A generalised diffusion equation corresponding to continuous time random walks with coupling between the waiting time and jump length distributions

Author:

Cleland J DORCID,Williams M A KORCID

Abstract

Abstract This work outlines a transiently coupled continuous time random walk framework. The coupling is between the displacement probability density function (PDF) and the elapsed waiting time, and is of the form 1 exp ( α t ) . Coupling of this kind generates larger displacements for longer waiting times, however, decouples on longer timescales. Such coupling is proposed to be physically relevant to systems in which diffusion is driven by the development of internal stresses which release and develop cyclically. This article outlines the associated generalised diffusion equation (GDE), which describes the time evolution of the position PDF, P ( x , t ) . The solution for P ( x , t ) is obtained using the properties of the Fox H function, both in terms of its transform properties but also its expansion theorems. The second moment and the asymptotic features of the solution are extracted. The relaxation of P ( x , t ) back to the solution of a decoupled-type GDE is highlighted.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3