Abstract
Abstract
Wilson’s original formulation of the renormalization group is perturbative in nature. We here present an alternative derivation of the infinitesimal momentum shell renormalization group, akin to the Wegner and Houghton scheme, that is a priori exact. We show that the momentum-dependence of vertices is key to obtain a diagrammatic framework that has the same one-loop structure as the vertex expansion of the Wetterich equation. Momentum dependence leads to a delayed functional differential equation in the cutoff parameter. Approximations are then made at two points: truncation of the vertex expansion and approximating the functional form of the momentum dependence by a momentum-scale expansion. We exemplify the method on the scalar φ
4-theory, computing analytically the Wilson–Fisher fixed point, its anomalous dimension η(d) and the critical exponent ν(d) non-perturbatively in d ∈ [3, 4] dimensions. The results are in reasonable agreement with the known values, despite the simplicity of the method.
Funder
Bundesministerium für Bildung und Forschung
Exploratory Research Space (ERS) Excellence initiative
European Commission
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献