Optimal covariant quantum measurements

Author:

Haapasalo ErkkaORCID,Pellonpää Juha-PekkaORCID

Abstract

Abstract We discuss symmetric quantum measurements and the associated covariant observables modelled, respectively, as instruments and positive-operator-valued measures. The emphasis of this work are the optimality properties of the measurements, namely, extremality, informational completeness, and the rank-1 property which contrast the complementary class of (rank-1) projection-valued measures. The first half of this work concentrates solely on finite-outcome measurements symmetric w.r.t. finite groups where we derive exhaustive characterizations for the pointwise Kraus-operators of covariant instruments and necessary and sufficient extremality conditions using these Kraus-operators. We motivate the use of covariance methods by showing that observables covariant with respect to symmetric groups contain a family of representatives from both of the complementary optimality classes of observables and show that even a slight deviation from a rank-1 projection-valued measure can yield an extreme informationally complete rank-1 observable. The latter half of this work derives similar results for continuous measurements in (possibly) infinite dimensions. As an example we study covariant phase space instruments, their structure, and extremality properties.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum-Classical Hybrid Systems and their Quasifree Transformations;Quantum;2023-07-26

2. Orbit-injective covariant quantum channels;Linear Algebra and its Applications;2023-07

3. Covariant CP-Instruments and Their Convolution Semigroups;Complex Analysis and Operator Theory;2021-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3