Solving the Quispel–Roberts–Thompson maps using Kajiwara–Noumi–Yamada’s representation of elliptic curves

Author:

Li XingORCID,Takenawa TomoyukiORCID

Abstract

Abstract It is well known that the dynamical system determined by a Quispel–Roberts–Thompson map (a QRT map) preserves a pencil of biquadratic polynomial curves on CP 1 × CP 1 . In most cases this pencil is elliptic, i.e. its generic member is a smooth algebraic curve of genus one, and the system can be solved as a translation on the elliptic fiber to which the initial point belongs. However, this procedure is rather complicated to handle, especially in the normalization process. In this paper, for a given initial point on an invariant elliptic curve, we present a method to construct the solution directly in terms of the Weierstrass sigma function, using Kajiwara–Noumi–Yamada’s parametric representation of elliptic curves.

Funder

Japan Society for the Promotion of Science, Grand

NSF of China

Science and Technology Innovation Plan of Shanghai

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference18 articles.

1. Fiber-dependent deautonomization of integrable 2D mappings and discrete Painlevé equations;Stefan Carstea;J. Phys. A: Math. Theor.,2017

2. Elliptic curves and birational representation of Weyl groups;Eguchi,2005

3. Do integrable mappings have the Painlevé property?;Grammaticos;Phys. Rev. Lett.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3