Abstract
Abstract
Non-Hermitian systems can exhibit extraordinary boundary behaviors, known as the non-Hermitian skin effects, where all the eigenstates are localized exponentially at one side of lattice model. To give a full understanding and control of non-Hermitian skin effects, we have developed the non-Hermitian generalized Bloch theorem to provide the analytical expression for all solvable eigenvalues and eigenstates, in which translation symmetry is broken due to the open boundary condition. By introducing the Vieta’s theorem for any polynomial equation with arbitrary degree, our approach is widely applicable for one-dimensional non-Hermitian tight-binding models. With the non-Hermitian generalized Bloch theorem, we can analyze the condition of existence or non-existence of the non-Hermitian skin effects at a mathematically rigorous level. Additionally, the non-Hermitian generalized Bloch theorem allows us to explore the real-space exceptional points. We also establish the connection between our approach and the generalized Brillouin zone method. To illustrate our main results, we examine two concrete examples including the Su–Schrieffer–Heeger chain model with long-range couplings, and the ladder model with non-reciprocal interaction. Our non-Hermitian generalized Bloch theorem provides an efficient way to analytically study various non-Hermitian phenomena in more general cases.
Funder
Natural Science Foundation of Shanghai Municipality
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献