Analytic continuation over complex landscapes

Author:

Kent-Dobias JaronORCID,Kurchan Jorge

Abstract

Abstract In this paper we follow up the study of ‘complex complex landscapes’ (Kent-Dobias and Kurchan 2021 Phys. Rev. Res. 3 023064), rugged landscapes of many complex variables. Unlike real landscapes, the classification of saddles by index is trivial. Instead, the spectrum of fluctuations at stationary points determines their topological stability under analytic continuation of the theory. Topological changes, which occur at so-called Stokes points, proliferate among saddles with marginal (flat) directions and are suppressed otherwise. This gives a direct interpretation of the gap or ‘threshold’ energy—which in the real case separates saddles from minima—as the level where the spectrum of the hessian matrix of stationary points develops a gap. This leads to different consequences for the analytic continuation of real landscapes with different structures: the global minima of ‘one step replica-symmetry broken’ landscapes lie beyond a threshold, their hessians are gapped, and are locally protected from Stokes points, whereas those of ‘many step replica-symmetry broken’ have gapless hessians and Stokes points immediately proliferate. A new matrix ensemble is found, playing the role that GOE plays for real landscapes in determining the topological nature of saddles.

Funder

Simons Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference17 articles.

1. Analytic continuation of Chern–Simons theory;Witten,2011

2. Complex paths around the sign problem;Alexandru;Rev. Mod. Phys.,2022

3. Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem;Howls;Proc. R. Soc. A,1997

4. On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau;Takagi;Jpn. J. Math.: Trans. Abstr.,1924

5. The elliptic law;Nguyen;Int. Math. Res. Not.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3