Abstract
Abstract
Almost all traditional physical formalisms are developed by using conservative forces, and the microscopic implementation of dissipation involves a sort of unusual process, mainly in quantum systems. In this work, we study the quantum harmonic model endowed with a non-Hermitian term responsible for dissipation. In addition, we also include an oscillating field that drives the model to a coherent state, which is dominated by fluctuation in a specific frequency, while regular thermal states are lowly occupied. The usual coherent state formalism at zero temperature is extended to treat dissipative models at finite temperature. We define a generating function that is used in the evaluation of the most relevant statistical averages, such as the particle distribution. Then, we successfully employ the developed formalism to discuss two well-known applications; the damped quantum harmonic oscillator, and the precession magnetization in a ferromagnetic sample.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
General Physics and Astronomy,Mathematical Physics,Modelling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics