Abstract
Abstract
In this paper we consider the diffusive search for a bounded target
Ω
∈
R
d
with its boundary
∂
Ω
totally absorbing. We assume that the target is surrounded by a semipermeable interface given by the closed surface
with
. That is, the interface totally surrounds the target and thus partially screens the diffusive search process. We also assume that the position of the diffusing particle (searcher) randomly resets to its initial position x
0 according to a Poisson process with a resetting rate r. The location x
0 is taken to be outside the interface,
, which means that resetting does not occur when the particle is within the interior of
. (Otherwise, the particle would have to cross the interface in order to reset to x
0.) Hence, the semipermeable interface also screens out the effects of resetting. We illustrate the theory by explicitly solving the boundary value problem for a three-dimensional (3D) spherically symmetric interface and a concentric spherical target. We calculate the mean first passage time (MFPT) to find (be absorbed by) the target and explore its behavior as a function of the permeability κ
0 of the interface and the radius of the interface R. In particular, we find that increasing R for a fixed target size reduces the MFPT and increases the optimal resetting rate at which the MFPT is minimized. We also find that the sensitivity of the MFPT to changes in κ
0 is a decreasing function of R. Finally, we introduce a stochastic single-particle realization of the search process based on a generalization of so-called snapping out Brownian motion (BM). The latter sews together successive rounds of reflecting BM on either side of the interface. The main challenge is establishing that the probability density generated by the snapping out BM satisfies the permeable boundary conditions at the interface. We show how this can be achieved using renewal theory.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献