Abstract
Abstract
Lennard–Jones mixtures represent one of the popular systems for the study of glass-forming liquids. Spatio/temporal heterogeneity and rare (activated) events are at the heart of the slow dynamics typical of these systems. Such slow dynamics is characterised by the development of a plateau in the mean-squared displacement (MSD) at intermediate times, accompanied by a non-Gaussianity in the displacement distribution identified by exponential tails. As pointed out by some recent works, the non-Gaussianity persists at times beyond the MSD plateau, leading to a Brownian yet non-Gaussian regime and thus highlighting once again the relevance of rare events in such systems. Single-particle motion of glass-forming liquids is usually interpreted as an alternation of rattling within the local cage and cage-escape motion and therefore can be described as a sequence of waiting times and jumps. In this work, by using a simple yet robust algorithm, we extract jumps and waiting times from single-particle trajectories obtained via molecular dynamics simulations. We investigate the presence of correlations between waiting times and find negative correlations, which becomes more and more pronounced when lowering the temperature.
Funder
H2020 Marie Skłodowska-Curie Actions
Narodowa Agencja Wymiany Akademickiej
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献