Hitting probabilities for fast stochastic search *

Author:

Linn SamanthaORCID,Lawley Sean DORCID

Abstract

Abstract Many physical phenomena are modeled as stochastic searchers looking for targets. In these models, the probability that a searcher finds a particular target, its so-called hitting probability, is often of considerable interest. In this work we determine hitting probabilities for stochastic search processes conditioned on being faster than a random short time. Such times have been used to model stochastic resetting or stochastic inactivation. These results apply to any search process, diffusive or otherwise, whose unconditional short-time behavior can be adequately approximated, which we characterize for broad classes of stochastic search. We illustrate these results in several examples and show that the conditional hitting probabilities depend predominantly on the relative geodesic lengths between the initial position of the searcher and the targets. Finally, we apply these results to a canonical evidence accumulation model for decision making.

Funder

National Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3