Path integrals on sl(2, R) orbits

Author:

Ashok Sujay KORCID,Troost JanORCID

Abstract

Abstract We quantise orbits of the adjoint group action on elements of the sl ( 2 , R ) Lie algebra. The path integration along elliptic slices is akin to the coadjoint orbit quantization of compact Lie groups, and the calculation of the characters of elliptic group elements proceeds along the same lines as in compact groups. The computation of the trace of hyperbolic group elements in a diagonal basis as well as the calculation of the full group action on a hyperbolic basis requires considerably more technique. We determine the action of hyperbolic one-parameter subgroups of PSL ( 2 , R ) on the adjoint orbits and discuss global subtleties in choices of adapted coordinate systems. Using the hyperbolic slicing of orbits, we describe the quantum mechanics of an irreducible sl ( 2 , R ) representation in a hyperbolic basis and relate the basis to the mathematics of the Mellin integral transform. We moreover discuss the representation theory of the double cover SL ( 2 , R ) of PSL ( 2 , R ) as well as that of its universal cover. Traces in the representations of these groups for both elliptic and hyperbolic elements are computed. Finally, we motivate our treatment of this elementary quantization problem by indicating applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference22 articles.

1. Quantization and unitary representations;Konstant,1970

2. A path integral to quantize spin;Nielsen;Nucl. Phys. B,1988

3. Functional integrals for spin;Johnson;Ann. Phys., NY,1989

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Duality defects in Dn-type Niemeier lattice CFTs;Journal of High Energy Physics;2024-05-07

2. Manifestly covariant worldline actions from coadjoint orbits. Part I. Generalities and vectorial descriptions;Journal of High Energy Physics;2024-01-05

3. Long strings and quasinormal winding modes;Journal of High Energy Physics;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3