Uncertainty of feed forward neural networks recognizing quantum contextuality

Author:

Wasilewski JanORCID,Paterek Tomasz,Horodecki Karol

Abstract

Abstract The usual figure of merit characterizing the performance of neural networks applied to problems in the quantum domain is their accuracy, being the probability of a correct answer on a previously unseen input. Here we append this parameter with the uncertainty of the prediction, characterizing the degree of confidence in the answer. A powerful technique for estimating uncertainty is provided by Bayesian neural networks (BNNs). We first give simple illustrative examples of advantages brought forward by BNNs, out of which we wish to highlight their ability of reliable uncertainty estimation even after training with biased datasets. Then we apply BNNs to the problem of recognition of quantum contextuality, which shows that the uncertainty itself is an independent parameter identifying the chance of misclassification of contextuality.

Funder

IRAP project, ICTQT,

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3