Graph limit of the consensus model with self-delay

Author:

Haskovec JanORCID

Abstract

Abstract It is known that models of interacting agents with self-delay (reaction-type delay) do not admit, in general, the classical mean-field limit description in terms of a Fokker–Planck equation. In this paper we propose the graph limit of the nonlinear consensus model with self-delay as an alternative continuum description and study its mathematical properties. We establish the well-posedness of the resulting integro-differential equation in the Lebesgue Lp space. We present a rigorous derivation of the graph limit from the discrete consensus system and derive a sufficient condition for reaching global asymptotic consensus. We also consider a linear variant of the model with a given interaction kernel, which can be interpreted as a dynamical system over a graphon. Here we derive an optimal (i.e. sufficient and necessary) condition for reaching global asymptotic consensus. Finally, we give a detailed explanation of how the presence of the self-delay term rules out a description of the mean-field limit in terms of a particle density governed by a Fokker–Planck-type equation. In particular, we show that the indistinguishability-of-particles property does not hold, which is one of the main ingredients for deriving the classical mean-field description.

Publisher

IOP Publishing

Reference38 articles.

1. Mean-field and graphs limits for collective dynamics models with time-varying weights;Ayi;J. Differ. Equ.,2021

2. Graph limit for interacting particle systems on weighted random graphs;Ayi,2023

3. Average consensus problems in networks of agents with delayed communications;Bliman;Automatica,2008

4. Consensus formation in first-order graphon models with time-varying topologies;Bonnet;Math. Models Methods Appl. Sci.,2022

5. Cucker-Smale model with normalized communication weights and time delay;Choi;Kinet. Relat. Models,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3