Abstract
Abstract
Correlations in multiparticle systems are constrained by restrictions from quantum mechanics. A prominent example for these restrictions are monogamy relations, limiting the amount of entanglement between pairs of particles in a three-particle system. A powerful tool to study correlation constraints is the notion of sector lengths. These quantify, for different k, the amount of k-partite correlations in a quantum state in a basis-independent manner. We derive tight bounds on the sector lengths in multi-qubit states and highlight applications of these bounds to entanglement detection, monogamy relations and the n-representability problem. For the case of two- and three qubits we characterize the possible sector lengths completely and prove a symmetrized version of strong subadditivity for the linear entropy.
Funder
European Research Council
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献