Abstract
Abstract
We explore a possible link between the structure of space at short length scales and the emergence of classical phenomena at macroscopic scales. To this end we adopt the paradigm of non-commutative space at short length scales and explicitly compute the outcomes of a double slit experiment and a von Neumann measurement in the non-commutative plane. A very consistent picture of a continuous quantum-to-classical transition emerges. The mechanism driving this transition is standard decoherence, which arises quite naturally from the tensor product structure of the non-commutative quantum Hilbert space. The double slit calculation enables us to establish a lower bound on the non-commutative parameter for this transition to become effective at particle numbers of the order of Avogadro’s number. Similarly, the result of the von Neumann measurement establishes a criterion involving the non-commutative parameter, apparatus size and coupling between system and apparatus for classicality to emerge.
Funder
National Research Foundation
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献