Abstract
Abstract
We study transport within a spatially heterogeneous one-dimensional quantum walk with a combination of hierarchical and random barriers. Recent renormalization group calculations for a spatially disordered quantum walk with a regular hierarchy of barriers alone have shown a gradual decrease in transport but no localization for increasing (but finite) barrier sizes. In turn, it is well-known that extensive random disorder in the spatial barriers is sufficient to localize a quantum walk on the line. Here we show that adding only a sparse (sub-extensive) amount of randomness to a hierarchy of barriers is sufficient to induce localization such that transport ceases. Our numerical results suggest the existence of a localization transition for a combination of both, the strength of the regular barrier hierarchy at large enough randomness as well as the increasing randomness at sufficiently strong barriers in the hierarchy.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics