Abstract
AbstractWave noise is correlated. While it may look random in space, correlations appear in space–time, because the noise is carried by wave propagation. These correlations of wave noise give rise to fluctuation forces such as the Casimir force, they are responsible for the particle creation in the dynamical Casimir effect and in the expanding Universe. This paper considers the noise correlations for light waves in non-exponentially expanding flat space. The paper determines the high-frequency asymptotics of the correlation spectrum in the conformal vacuum. These noise correlations give rise to a nontrivial vacuum energy that may appear as the cosmological constant.
Funder
Israel Science Foundation
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献