Abstract
Abstract
We investigate the typical sizes and shapes of sets of points obtained by irregularly tracking two-dimensional Brownian bridges. The tracking process consists of observing the path location at the arrival times of a non-homogeneous Poisson process on a finite time interval. The time varying intensity of this observation process is the tracking strategy. By analysing the gyration tensor of tracked points we prove two theorems which relate the tracking strategy to the average gyration radius, and to the asphericity—a measure of how non-spherical the point set is. The act of tracking may be interpreted either as a process of observation, or as process of depositing time decaying ‘evidence’ such as scent, environmental disturbance, or disease particles. We present examples of different strategies, and explore by simulation the effects of varying the total number of tracking points.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Brownian Bridge Interpolation for Human Mobility?;Proceedings of the 29th International Conference on Advances in Geographic Information Systems;2021-11-02