Abstract
Abstract
A significant proportion of the infections driving the current SARS-CoV-2 pandemic are transmitted asymptomatically. Here we introduce and study a simple epidemic model with separate compartments comprising asymptomatic and symptomatic infected individuals. The linear dynamics determining the outbreak condition of the model is equivalent to a renewal theory approach with exponential waiting time distributions. Exploiting a nontrivial conservation law of the full nonlinear dynamics, we derive analytic bounds on the peak number of infections in the absence and presence of mitigation through isolation and testing. The bounds are compared to numerical solutions of the differential equations.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献