Soliton dynamics and stability in the ABS spinor model with a PT -symmetric periodic complex potential

Author:

Mertens Franz GORCID,Sánchez-Rey BernardoORCID,Quintero Niurka RORCID

Abstract

Abstract We investigate the effects on solitons dynamics of introducing a PT -symmetric complex potential in a specific family of the cubic Dirac equation in (1+1)-dimensions, called the Alexeeva–Barashenkov–Saxena model. The potential is introduced taking advantage of the fact that the nonlinear Dirac equation admits a Lagrangian formalism. As a consequence, the imaginary part of the potential, associated with gains and losses, behaves as a spatially periodic damping (changing from positive to negative, and back) that acts at the same time on the two spinor components. A collective coordinates (CCs) theory is developed by making an ansatz for a moving soliton where the position, rapidity, momentum, frequency, and phase are all functions of time. We consider the complex potential as a perturbation and verify that numerical solutions of the equation of motions for the CCs are in agreement with simulations of the nonlinear Dirac equation. The main effect of the imaginary part of the potential is to induce oscillations in the charge and energy (they are conserved for real potentials) with the same frequency and phase as the momentum. We find long-lived solitons even with very large charge and energy oscillations. Additionally, we extend to the nonlinear Dirac equation an empirical stability criterion, previously employed successfully in the nonlinear Schrödinger equation.

Funder

Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

Ministerio de Ciencia e Innovación

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3