Complete dynamical evaluation of the characteristic polynomial of binary quantum graphs

Author:

Harrison J MORCID,Hudgins T

Abstract

Abstract We evaluate the variance of coefficients of the characteristic polynomial for binary quantum graphs using a dynamical approach. This is the first example where a spectral statistic can be evaluated in terms of periodic orbits for a system with chaotic classical dynamics without taking the semiclassical limit, which here is the limit of large graphs. The variance depends on the sizes of particular sets of primitive pseudo orbits (sets of distinct primitive periodic orbits): the set of primitive pseudo orbits without self-intersections and the sets of primitive pseudo orbits with a fixed number of self-intersections, all of which consist of two arcs of the pseudo orbit crossing at a single vertex. To show other pseudo orbits do not contribute we give two arguments. The first is based on a reduction of the variance formula from a sum over pairs of primitive pseudo orbits to a sum over pseudo orbits where no bonds are repeated. The second employs a parity argument for the Lyndon decomposition of words. For families of binary graphs, in the semiclassical limit, we show the pseudo orbit formula approaches a universal constant independent of the coefficient of the polynomial. This is obtained by counting the total number of primitive pseudo orbits of a given length.

Funder

Simons Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference47 articles.

1. Spectral determinant on quantum graphs;Akkermans;Ann. Phys., NY,2000

2. Finite pseudo orbit expansions for spectral quantities of quantum graphs;Band;J. Phys. A: Math. Theor.,2012

3. Lyndon word decompositions and pseudo orbits on q-nary graphs;Band;J. Math. Anal. Appl.,2019

4. Star graphs and Šeba billiards;Berkolaiko;J. Phys. A: Math. Gen.,2001

5. Full counting statistics of chaotic cavities from classical action correlations;Berkolaiko;J. Phys. A: Math. Theor.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3