Hamiltonian facets of classical gauge theories on E-manifolds

Author:

Mir PauORCID,Miranda EvaORCID,Nicolás PabloORCID

Abstract

AbstractManifolds with boundary, with corners,b-manifolds and foliations model configuration spaces for particles moving under constraints and can be described asE-manifolds.E-manifolds were introduced in Nest and Tsygan (2001Asian J. Math.5599–635) and investigated in depth in Miranda and Scott (2021Rev. Mat. Iberoam.371207–24). In this article we explore their physical facets by extending gauge theories to theE-category. Singularities in the configuration space of a classical particle can be described in several new scenarios unveiling their Hamiltonian aspects on anE-symplectic manifold. Following the scheme inaugurated in Weinstein (1978Lett. Math. Phys.2417–20), we show the existence of a universal model for a particle interacting with anE-gauge field. In addition, we generalise the description of phase spaces in Yang–Mills theory as Poisson manifolds and their minimal coupling procedure, as shown in Montgomery (1986PhD ThesisUniversity of California, Berkeley), for base manifolds endowed with anE-structure. In particular, the reduction at coadjoint orbits and the shifting trick are extended to this framework. We show that Wong’s equations, which describe the interaction of a particle with a Yang–Mills field, become Hamiltonian in theE-setting. We formulate the electromagnetic gauge in a Minkowski space relating it to the proper time foliation and we see that our main theorem describes the minimal coupling in physical models such as the compactified black hole.

Funder

“la Caixa” Foundation

Agència de Gestió d’Ajuts Universitaris i de Recerca

Institució Catalana de Recerca i Estudis Avançats

Agencia Estatal de Investigación

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference50 articles.

1. Contact geometry of the restricted three-body problem;Albers;Commun. Pure Appl. Math.,2012

2. The holonomy groupoid of a singular foliation;Androulidakis;J. Reine Angew. Math.,2009

3. Smoothness of holonomy covers for singular foliations and essential isotropy;Androulidakis;Math. Z.,2013

4. An invitation to singular symplectic geometry;Braddell;Int. J. Geom. Methods Mod. Phys.,2019

5. b-Structures on Lie groups and Poisson reduction;Braddell;J. Geom. Phys.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Arnold conjecture for singular symplectic manifolds;Journal of Fixed Point Theory and Applications;2024-04-18

2. Reduction theory for singular symplectic manifolds and singular forms on moduli spaces;Advances in Mathematics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3