Measurement of a quantum system with a classical apparatus using ensembles on configuration space*

Author:

Reginatto MarcelORCID,Ulbricht SebastianORCID

Abstract

Abstract Finding a physically consistent approach to modeling interactions between classical and quantum systems is a highly nontrivial task. While many proposals based on various mathematical formalisms have been made, most of these efforts run into difficulties of one sort or another. One of the first detailed descriptions was given by Sudarshan and his collaborators who, motivated by the measurement problem in quantum mechanics, proposed a Hilbert space formulation of classical–quantum interactions which made use of the Koopman–von Neumann description of classical systems. Here we use the approach of ensembles on configurations space to give a detailed account of a classical apparatus measuring the position of a quantum particle that is prepared in a superposition of two localized states. We show that the probability of the pointer of the classical apparatus is left in a state that corresponds to the probability of the quantum particle. A subsequent observation of the pointer leads to an update of its probability density. From this we can obtain information about the position of the quantum particle, leading to an update of its wave function. Since this formalism incorporates uncertainties and finite measurement precision, it is well suited for metrological applications. Furthermore, it resolves fundamental issues that appear in the case of a quantum description of the apparatus.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference36 articles.

1. Measurement analysis and quantum gravity;Albers;Phys. Rev. D,2008

2. Is quantum gravity necessary?;Carlip;Class. Quantum Grav.,2008

3. Nonquantum gravity;Boughn;Found. Phys.,2009

4. Is a graviton detectable?;Dyson;Int. J. Mod. Phys. A,2013

5. Can gravitons be detected?;Rothman;Found. Phys.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3