Abstract
Abstract
The capacity to devise order metrics to characterize and classify microstructures of multiphase heterogeneous media across length scales is an outstanding but highly challenging task, given the richness of the possible geometries and topologies of the phases that can arise. This investigation initiates a program to formulate order metrics to characterize the degree of order/disorder of the microstructures of two-phase media in
d
-dimensional Euclidean space
R
d
across length scales. In particular, we propose the use of the local volume-fraction variance
σ
V
2
(
R
)
associated with a spherical window of radius R as an order metric. We determine
σ
V
2
(
R
)
as a function of
R
for 22 different models across the first three space dimensions, including both hyperuniform and nonhyperuniform systems with varying degrees of short- and long-range order. We find that the local volume-fraction variance as well as asymptotic coefficients and integral measures derived from it provide reasonably robust and sensitive order metrics to categorize disordered and ordered two-phase media across all length scales. Such order metrics could be employed to accelerate the discovery of novel heterogeneous materials by tailoring their degree of order/disorder.
Funder
Air Force Office of Scientific Research Program on Mechanics of Multifunctional Materials and Microsystems
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献